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When a fluid stream in a conduit splits in order to pass around an obstruction, it is
possible that one branch will be critically controlled while the other remains not so.
This is apparently the situation in Pacific Ocean abyssal circulation, where most of the
northward flow of Antarctic bottom water passes through the Samoan Passage, where it is
hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and
is not controlled. These observations raise a number of questions concerning the dynamics
necessary to support such a regime in the steady state, the nature of upstream influence and
the usefulness of rotating hydraulic theory to predict the partitioning of volume transport
between the two paths, which assumes the controlled branch is inviscid. Through the
use of a theory for constant potential vorticity flow and accompanying numerical model,
we show that a steady-state regime similar to what is observed is dynamically possible
provided that sufficient bottom friction is present in the uncontrolled branch. In this case,
the upstream influence that typically exists for rotating channel flow is transformed into
influence into how the flow is partitioned. As a result, the partitioning of volume flux can
still be reasonably well predicted with an inviscid theory that exploits the lack of upstream
influence.
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1. Introduction

The lowest limb of the ocean meridional overturning circulation is influenced by bottom
topography and in some places channelled through narrow gaps. In some cases, ocean
basins are connected by two or more deep passages. Examples include the Denmark
Strait/Iceland Scotland Ridge/Faroe Bank Channel system separating the Nordic Seas from
the North Atlantic Ocean, the Vema and Hunter Channels separating the Argentine and
Brazil Basins and the Chain and Romanche Fracture Zones separating basins lying to the
west and east of the mid-Atlantic Ridge. All of these passages contain topographic sills
that the passing dense water spills over and that exert hydraulic control. The partitioning
of the volume transport between the passages depends on factors such as the relative sill
heights and passage widths, the broader circulation patterns that exist upstream of the sills,
frictional bottom drag and possibly other factors.

A particularly representative and important example of deep flow in multiple passages
occurs in the central Pacific at around 9 ◦S, where the entire northward flow of Antarctic
bottom water is funnelled through a set of parallel gaps, primarily the Samoan Passage but
also a small gap in the Robbie Ridge to the west and a broad passage to the east of the
Manihiki Plateau (figure 1b). A volume transport of 6.0 Sv (1 Sv ≡ 106m3 s−1) for the
Samoan Passage was estimated from direct current meter measurements by Roemmich,
Hautala & Rudnick (1996) and Rudnick (1997), while a more recent field campaign
resulted in an estimate of 5.4 Sv (Voet et al. 2016). Roemmich et al. (1996) also made
hydrography-based transport estimates for the other gaps and found 1.1 Sv for Robbie
Ridge and 2.8 Sv for the flow around the Manihiki Plateau. The Samoan Passage itself is
complex and contains a number of branching channels with several sills. The dense flows
in the various channels are observed to spill over the various sills, suggesting hydraulic
control, and some of the highest levels of energy dissipation and mixing are found in the
lee of the sills (Alford et al. 2013; Voet et al. 2015; Carter et al. 2019; Cusack et al. 2019).
On the other hand, the 2.8 Sv of flow that passes to the east of Manihiki is observed to
be concentrated in a deep western boundary current (Roemmich et al. 1996), one that is
not constrained by a channel geometry. Although this flow encounters some deep ridges,
model simulations (Pratt et al. 2019) suggest that it flows around, rather than over, the
ridges and thus does not experience hydraulic control.

These applications raise some broad questions concerning the nature of hydraulics when
the incoming flow branches into multiple passages. This work mainly focuses on the
hydraulics of the flow that splits around an island. In this case, a narrow channel to the
west of the island and a broad passage to the east of the island form a two-passage system
(figure 1a). Hydraulic control generally implies that a sill or width constriction (or both)
chokes the flow and thereby exerts an influence that extends far upstream. This means
that upstream conditions cannot be specified independently of the geometric conditions
(sill height, channel width, etc.) at the most constricted section. Upstream influence
can be demonstrated (e.g. Baines 1995; Pratt & Chechelnitsky 1997) by establishing a
hydraulically controlled steady state and then raising the sill level slightly. The flow then is
choked to a greater degree and a transient disturbance is produced that propagates upstream
and alters the conditions there. In models of hydraulics with rotation, most notably that
of Gill (1977), this disturbance takes the form of a Kelvin wave that is trapped to one
of the sidewalls of the channel. For our Southern Hemisphere application, a Kelvin wave
propagates with the wall to its left, and an upstream-propagating wave generated within the
channel would therefore be trapped to the eastern wall of the channel, also the boundary
of the island. The wave would travel counter-clockwise around the island and re-enter the
channel from downstream, with unknown consequences. Conditions far upstream would
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Figure 1. (a) Schematic picture of the circulation integral. Upstream boundary flow enters the channel and
causes perturbations in terms of Kelvin waves to circle the island counter-clockwise and re-enter the channel
from downstream. (b) Topography of the Samoan Passage and Manihiki Plateau region. Transports estimated
from a hydrographic campaign (violet dots) across Robbie Ridge, Samoan Passage and to the east of the
Manihiki Plateau by Roemmich et al. (1996) are marked. The southernmost arrow shows the total transport,
indicating the deep western boundary current. Panels (c) and (d) show cross-section bathymetry structures at
the sill of the western and eastern paths (red sections in (b)).

not be influenced, and one would presumably be free to set them independently of any
consideration for the geometric conditions in the channel.

A feature that makes the Samoan Passage application novel is that the main branch of
the throughflow (that through the Samoan Passage) is hydraulically controlled, and subject
to elevated levels of turbulence that typically occur in overflows, whereas the eastern
branch is not. Is this dynamically consistent? An argument against such a scheme can
be expressed using Kelvin’s circulation theorem, written for a streamline that coincides
with the boundary of the Manihiki Plateau (Cl)

∂

∂t

∮
Cl

u · l ds +
∮

Cl

( f + ζ )u · n ds = δB +
∮

Cl

D · l ds. (1.1)

The above can be obtained by integrating the tangential component of the shallow-water
equations (Pratt et al. 2019), which assume the flow is contained in a single, homogeneous
bottom layer. Here, u is the horizontal velocity of the flow, f is the Coriolis parameter, ζ

is the relative vorticity of the flow. The unit vectors l and n are tangent and normal to the
contour Cl that starts and ends immediately upstream and downstream of a hypothetical
hydraulic jump, and s is the arc length measured positive in the counter-clockwise direction
(figure 1a). The second term on the left-hand side of (1.1) is zero due to the no-normal-flow
condition along Cl. The effect of bottom friction D is represented by its integral along
Cl, and the effect of energy dissipation in a possible hydraulic jump is represented by
the drop δB in the Bernoulli function across the jump. Most rotating hydraulic theories
assume that D is zero, but a finite value of δB is still permitted in acknowledgement that
a hydraulically controlled flow generally has supercritical flow downstream of the sill,
and that this supercritical flow undergoes a transition back to subcritical via a dissipative
jump. If the flow is controlled in the Samoan Passage, but not on the eastern side of the
Manihiki Plateau, then a single jump will occur and δB will be positive. In this case, a
steady state cannot exist in the absence of bottom drag: indeed the flow would develop
an accelerating, counter-clockwise circulation around the island. Thus, a steady-state flow
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that is inviscid, at least away from hydraulic jumps, can apparently not be controlled within
one branch, but not the other. A steady state is possible if both branches are hydraulically
controlled and both contain hydraulic jumps that produce the same δB along the wall of the
island. Alternatively, a steady state with hydraulic control in just one passage is possible if
frictional drag along the alternative pathway is sufficiently large.

In order to explore these issues more deeply, we consider an idealized, shallow-water
system with a single channel, bounded by a sidewall to the west and by an island or a
deep-sea plateau (referred to as the ‘island’) to the east. For simplicity, the Robbie Ridge
gap is disregarded and the multiple channels within the Samoan Passage are combined
into a single channel. The flow is confined to a homogeneous deep layer and is fed by a
northward boundary current that is trapped on the western sidewall. The channel contains
a shallow sill that acts to hydraulically control the flow, whereas the abyssal plane to the
east of the island has no sills or ridges. We assume that the flow has uniform potential
vorticity, at least upstream of any hydraulic jumps, and our analytical model is an extension
to the Gill (1977) hydraulic model for uniform (and non-zero) potential vorticity. The
model flow contains Kelvin waves but not potential vorticity waves. Southern Hemisphere
rotation is assumed, meaning that a Kelvin wave propagates with the wall to its left. In
addition to the traditional, idealized topography in which sidewalls are vertical and signal
transmission is due to Kelvin waves, we will consider the more realistic case in which
the bottom topography varies continuously and the layer thickness goes to zero at the
edges. Kelvin waves are then replaced by a frontal wave (Stern 1980) whose properties are
described in detail in Pratt & Whitehead (2008). We will also consider numerical models
for the latter type of topography.

In addition to the practical matter of predicting how the deep transport is partitioned
between the channel and the eastern abyssal plain from our extended theory (§ 2), we wish
to explore several conceptual issues using numerical models (§ 3). To begin with, we wish
to determine whether and under what circumstances a steady-state solution is possible. We
also wish to examine hydraulic transitions in the channel, including hydraulic jumps, at
least to the extent possible within the confines of the model. In addition, we wish to better
understand the conditions that support a steady state, and to examine how the upstream
influence is altered in such a state. Finally, we wish to discuss the hydraulic control of
the channel flow responding to more than one pathway (e.g. the Samoan Passage deep
flow splitting between two major pathways) (Whitehead 2003; Girton et al. 2019). We will
go beyond the traditional idealized topography in which sidewalls are vertical and signal
transmission is due to Kelvin waves. We will do so using a more realistic topography in
which the channel has a parabolic cross-section allowing the layer thickness to vanish at
each edge.

2. Theory for rotating hydraulic transport

The hydraulics of a steady, single-layer flow with uniform (but non-zero) potential vorticity
in a rotating channel with rectangular cross-section was described by Gill (1977). In his
model, the flow is assumed to funnel from a wide upstream basin through a single narrow
passage into the downstream basin. For flows that are hydraulically controlled, either by
a topographic sill located within the narrow channel, or by the narrows itself, prediction
of the volume transport is one of the fundamental goals. In particular, one would like to
predict the total transport given certain key topographic information such as the height
of the sill, along with other information on upstream conditions. Gill (1977) showed
that the flow is confined to boundary currents along each wall, and that in the upstream
reservoir these currents are separated by a wide, stagnant interior region. He chose to
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characterize the upstream state by the layer depth within the stagnant region and by the
value of the transport streamfunction there. The latter specifies how the total transport
is partitioned between the two boundary currents. In practice, the interior value of the
transport streamfunction is not easy to observe and so alternative formulations of the
upstream condition have been suggested (Whitehead & Salzig 2001; Whitehead 2003).
The situation depicted in figure 1 is fundamentally different because there is no upstream
influence, meaning that one is free to impose an upstream condition with an arbitrary
volume transport. The object is no longer to calculate the total transport but rather to
predict how it is partitioned between the channel and the wide passage to the east. In
the case of the Samoan Passage, the upstream flow takes the form of a broad, northward
deep western boundary current which is trapped to the Tonga-Kermadec Ridge (Warren &
Voorhis 1970).

We next extend Gill’s shallow-water model to the domain bounded to the west by a
wall (x = 0), and containing a channel that is bounded to the west by that wall and to
the east by an island (figure 2a). In view of the Samoan Passage application, we assume
Southern Hemisphere rotation, so that the value of the Coriolis parameter f < 0. The
circulation is fed from the south by a boundary current that flows northward (positive
y-direction) along the western wall. The domain can be roughly split into three parts:
the upstream basin, the channel and east of the island. The bottom in the upstream basin
and the region to the east of the island are assumed to be flat and bounded by vertical
walls. Far to the east, the layer is assumed to be stagnant, and with constant thickness
D∞ (figure 2b), also known as the potential depth. The most important horizontal length
scale is the Rossby radius of deformation (LD = √

(g′D∞)/|f |) based on the potential
depth. As Gill (1977) showed, all boundary currents will have this width, regardless
of the local layer depth. We also employ the approximations, common in hydraulics,
that the width of the channel and the bottom topography vary in the along-channel (y)
direction over a scale that is long compared with LD. The cross-channel velocity and
fluid acceleration are then arguably much smaller in magnitude than the along-channel
counterparts, implying that the dynamics is semi-geostrophic. The theory for a controlled
flow with uniform potential vorticity is developed for both a channel with a rectangular
cross-section (figure 2c), in which it is possible for the fluid depth to vanish and the
flow to separate at the eastern wall, and also for a channel with parabolic cross-section
(figure 2d), for which the layer thickness along each edge is always zero. We disregard
friction for the time being but will introduce it in the numerical simulations. The treatment
proceeds using variables that have been rendered non-dimensional using a generic depth
scale D for layer thickness d and topographic elevation h, a corresponding Rossby radius
Ld = √

(g′D)/|f | for the cross-channel distance x (usually smaller than LD defined by the
potential depth) and the long gravity wave speed

√
(g′D) for the northward velocity v.

The constant g′ represents the gravitational acceleration, reduced in proportion to the
relative density difference between the lower (active) layer and overlying, less dense fluid
(i.e. the so-called ‘reduced gravity’ g′ = g(�ρ/ρ0)). In this paper, star superscripts are
used to denote dimensional variables (represented by ()∗). Examples of dimensionless
variables include d = d∗/D, h = h∗/D, x = x∗/Ld, v = v∗/

√
g′D. Although the Southern

Hemisphere rotation is assumed throughout the paper, the theory is easy to be adapted
to Northern Hemisphere applications. The following subsections develop predictions
of the partitioning of transport between two passages, one narrow and containing a
sill and the other broad and with a flat bottom. We first explore the case in which
the narrow channel has a rectangular cross-section and then proceed to the case of a
parabolic cross-section.
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Figure 2. (a) An overlook sketch of a two-passage system. A narrow channel is located between the western
boundary and an island, leaving a vast passage to the east of the island. (b) The cross-section of the upstream
basin. The rectangular (c) and parabolic (d) cross-sections of the channel.

2.1. Rectangular channel theory
As in the Gill (1977) model, the potential vorticity q∗ = ( f + ∂v∗/∂x∗ − ∂v∗/∂y∗)/d∗ is
assumed to be constant, eliminating Rossby waves from consideration. The value of the
potential vorticity may be obtained by evaluating the expression for potential vorticity in
the stagnant region far to the east of the boundaries, where the dimension depth is D∞,
and thus q∗ = f /D∞. The scale for potential vorticity is |f |/D.

The non-dimensional expression for the semigeostrophic potential vorticity q in a
Southern Hemisphere channel is then

q =
−1 + ∂v

∂x
d

= − D
D∞

. (2.1)

The semigeostrophic approximation also requires that the northward velocity is
geostrophically balanced

v = −∂(d + h)

∂x
. (2.2)

Assuming the bottom elevation h( y) in the along-channel direction and eliminating v

between these two yields a relationship for the cross-channel (x) structure of the layer
thickness d

∂2d
∂x2 − |q|d = −1. (2.3)

Since there is no upstream influence in our multi-passage system, the western boundary
current can be defined independently and can solely represent the upstream condition.
Assuming that the upstream basin is infinitely wide compared with the Rossby radius of
deformation in the upstream basin LD, the solution of flow along the western wall (x = 0)
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in the upstream region may be written as

d(x) = |q|−1 + [d(x = 0) − |q|−1] e−|q|1/2x,

v(x) = |q|1/2[d(x = 0) − |q|−1] e−|q|1/2x.

}
(2.4)

The solutions of (2.3) in the channel are given by

d(x) = |q|−1 + d̂
sinh[|q|1/2(x − x0)]

sinh(1
2 |q|1/2w)

+ (d̄ − |q|−1)
cosh[|q|1/2(x − x0)]

cosh(1
2 |q|1/2w)

,

v(x) = |q|1/2

[
d̂

cosh[|q|1/2(x − x0)]

sinh(1
2 |q|1/2w)

+ (d̄ − |q|−1)
sinh[|q|1/2(x − x0)]

cosh(1
2 |q|1/2w)

]
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)

where x0 is at the centre of the channel, w is the width of the channel,

d̄ =
d

(
x0 − w

2

)
+ d

(
x0 + w

2

)
2

and d̂ =
−d

(
x0 − w

2

)
+ d

(
x0 + w

2

)
2

, (2.6a,b)

represent the average and difference of the flow thickness at walls. The corresponding
average and difference of v at the walls are given by

v̄ =
v

(
x0 − w

2

)
+ v

(
x0 + w

2

)
2

= −|q|1/2T−1d̂,

v̂ =
−v

(
x0 − w

2

)
+ v

(
x0 + w

2

)
2

= −|q|1/2T(d̄ − |q|−1),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (2.7)

where T = tanh(1
2 |q|1/2w).

We then define a transport streamfunction Ψ from the along-channel velocity vd =
∂Ψ /∂x. Since the interior of the upstream basin is stagnant, the streamfunction there is
constant. For convenience, we take Ψ = 0 in the interior basin (x � 0), which allows Ψ at
any streamline to be given by the flow flux between that streamline and the stagnant basin
interior. For example, the western wall can be treated as a single streamline extending from
the upstream basin toward the channel because of the condition of no normal flux. Given
the transport Q of the western boundary current in the upstream basin, we find Ψ = −Q
along the western wall. Here, Q can be approximated by integrating vd ≡ −d(∂d/∂x) from
x = 0 to a point in the basin interior where d(x � 0) ≈ |q|−1 and v(x � 0) ≈ 0

Q 	 −|q|−2 − d2(x = 0)

2
. (2.8)

From (2.4) and (2.8), we get d(x = 0) 	
√

2Q +|q|−2 and v(x = 0) 	 |q|1/2(
√

2Q +|q|−2

−|q|−1). For an inviscid flow that has a constant q, the Bernoulli function B=v2/2+ d+ h
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is conserved along streamlines (Crocco 1937)

q = dB
dΨ

. (2.9)

Integrating (2.9) from the basin interior where B(x � 0) ≈ |q|−1 and utilizing Ψ (x =
0) = −Q, the Bernoulli function at the western wall is determined by Q and q

B(x = 0) 	 |q|Q + |q|−1. (2.10)

The no-normal-flux boundary condition also ensures that the island boundary is a
streamline (Ψ = −Ψ0). If the upstream inflow splits as it approaches the entrance of the
channel, a streamline originating from the upstream western boundary current area would
meet the island boundary at a stagnation point upstream of the sill (P in figure 2a). The
streamfunctions at that streamline and at the island boundary share the same value. It is
worth noting that a stagnation point located downstream of the sill on the island boundary
is also possible, in which case the flow immediately to the east of the splitting streamline
has to turn around as it approaches the stagnation point. An upstream/downstream
stagnation point corresponds to a uniformly northward flow/reversal flow in the eastern
part of the channel. In regions upstream of and at the sill, where the flow cannot undergo
a hydraulic jump, we may assume that v and d are continuous and compute the transport
through the channel Q1 by integrating −d(∂d/∂x) between the two sidewalls of the channel

Q1 = −2d̂d̄. (2.11)

From definition, Ψ0 = Q − Q1 = Q + 2d̂d̄.
The average Bernoulli function in the channel

B̄ =
B

(
x0 − w

2

)
+ B

(
x0 + w

2

)
2

=
v2

(
x0 − w

2

)
+ v2

(
x0 + w

2

)
4

+
d

(
x0 − w

2

)
+ d

(
x0 + w

2

)
2

+ h, (2.12)

can be simplified by substituting (v2(x0 − w/2) + v2(x0 + w/2))/2 with v̄2 + v̂2 and
employing (2.7)

B̄ = 1
2 |q|[T−2d̂2 + T2(d̄ − |q|−1)2] + d̄ + h. (2.13)

Also, B̄ can be rearranged as (B(x0 + w/2) − B(x0 − w/2))/2 + B(x0 − w/2). Since q is
constant, the first term can be written in terms of Q1 and q following (2.9)

B̄ = −|q|Q1

2
+ B

(
x0 − w

2

)
, (2.14)

where B(x0 − w/2) is conserved along the streamline at the western wall, and thus can be
expressed by Q and q from (2.10).

Combining (2.13) and (2.14) by substituting (2.10) and (2.11) relates a single unknown
flow property in the channel d̄ to the local geometric parameters h, w by the equation

G(d̄ | h; w; q; Q; Q1) = Q2
1

4T2d̄2
+ T2(d̄ − |q|−1)2 + 2|q|−1d̄

− 2|q|−1(|q|Q + |q|−1 − h) + Q1 = 0. (2.15)

We are primarily interested in flows that are hydraulically controlled by a sill (maximum
bottom elevation) that lies within the channel. Such flows approach the sill in a subcritical
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Hydraulic control of flow in a multi-passage system

state that allows upstream propagation by at least one of the waves permitted under the
semigeostrophic approximation. Upon reaching the sill, the flow undergoes a transition to
a supercritical state in which the same wave propagates downstream. At the transition the
wave is stationary, meaning that it is technically possible to locally alter the steady flow
without changing the upstream conditions. As shown by Gill (1977), this critical condition
is given by ∂G/∂ d̄|c = 0 and leads here to

(1 − T2
c )|q|−1 + T2

c d̄c = Q2
1c

4T2
c d̄3

c
, (2.16)

where the subscript ()c denotes quantities evaluated at the critical section. Elimination
of d̄c between (2.15), evaluated at the critical section, and (2.16) determines the critical
transport in the channel Q1c in terms of the topography of the critical section wc, hc, and
the upstream conditions q and Q. In the dimensionalized form, the determination of Q∗

1c
depends on w∗

c , h∗
c , D∞ and Q∗.

It is possible that the flow in the channel may become separated from the eastern wall
and thereby take on a width we that is less than the local channel width. In this case, it
is easy to show that Q1 = 2d̄2, so that d̄ becomes fixed, and it is better to use we as the
primary variable characterizing the flow. Equation (2.15) is now replaced by

G(Te | d̄; h; q; Q) = T2
e (d̄ − |q|−1)2 + T−2

e d̄2 + 2d̄2 + 2|q|−1d̄

− 2|q|−1(|q|Q + |q|−1 − h) = 0, (2.17)

where Te = tanh(|q|1/2we/2). The width and the transport of a separated flow under
hydraulic control can be solved by substituting the critical condition ∂G/∂Te|c = 0 into
(2.17).

2.2. Parabolic channel theory
The need to distinguish between separated and non-separated states is a consequence of
the unrealistic assumption of vertical sidewalls and is eliminated by the use of a channel
cross-section with continuously varying bottom elevation. A parabolic cross-section is
almost invariably a better approximation to conditions in nature and has been considered
by Borenäs & Lundberg (1986) within the context of uniform potential vorticity. We do,
however, continue to assume that the upstream basin is bounded by vertical walls, and we
employ the same streamline configuration as in the rectangular channel case. Therefore,
the upstream condition is specified by the value of the potential vorticity and by the
transport of the upstream western boundary current. Now we give the derivation of the
analogue of (2.15) and (2.16) for a parabolic channel and the procedure for estimating the
partitioning of inflow transport.

Consider a channel with parabolic cross-sectional bottom elevation, in dimensional
variables

h∗ = h∗
0 + α(x∗ − x∗

0)
2, (2.18)

where h∗
0 is the height of the channel bottom at its deepest point, and has value zero in

the upstream bottom. Equation (2.18) is non-dimensionalized using Ld = √
g′D/|f | for the
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cross-sectional dimension x and D for the bottom topography h to yield

h = h0 + (x − x0)
2

r
, (2.19)

where r = |f |2/g′α is the non-dimensional shape parameter, large for a ‘wide’ channel
(one for which the radius of curvature �Ld).

The non-dimensional governing equations for the flow in a parabolic channel are given
by

∂2d
∂x2 − |q|d = −1 − 2r−1,

v = −∂(d + h)

∂x
,

⎫⎪⎪⎬
⎪⎪⎭ (2.20)

which can be solved analytically given the boundary conditions d(x0 − a) = d(x0 + b) =
0, where x = x0 − a and x = x0 + b are the locations where the interface intersects the
bottom (figure 2d)

d(x) = 1 + 2r−1

|q| sinh(|q|1/2(a + b))
[sinh(|q|1/2(x − x0 − b))

− sinh(|q|1/2(x − x0 + a))] + 1 + 2r−1

|q| ,

v(x) = − 1 + 2r−1

|q|1/2 sinh(|q|1/2(a + b))
[cosh(|q|1/2(x − x0 − b))

− cosh(|q|1/2(x − x0 + a))] − 2r−1(x − x0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.21)

The volume flux Q1 can be obtained by integrating −d(∂(d + h)/∂x) across the channel

Q1 = (a − b)
1 + 2r−1

|q|r {2|q|−1/2[sinh−1(|q|1/2(a + b))

− coth(|q|1/2(a + b))] + (a + b)}, (2.22)

and the wall-average Bernoulli function in the channel is again defined by

B̄ = B(x0 − a) + B(x0 + b)

2
, (2.23)
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Hydraulic control of flow in a multi-passage system

where B(x0 − a) and B(x0 + b) are Bernoulli functions at the western and eastern edges
of the flow, respectively,

B(x0 − a) = 1
2

{
− 1 + 2r−1

|q|1/2 sinh(|q|1/2(a + b))
[cosh(|q|1/2(a + b)) − 1] + 2r−1a

}2

+ h0 + a2

r
,

B(x0 + b) = 1
2

{
− 1 + 2r−1

|q|1/2 sinh(|q|1/2(a + b))
[1 − cosh(|q|1/2(a + b))] − 2r−1b

}2

+ h0 + b2

r
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.24)

As before, we invoke conservation of the Bernoulli function and volume flux between
the upstream region, where ((2.10), (2.14)) are still valid, and the sill section of the
parabolic channel. This connection is made for streamlines that originate upstream and
that pass through the channel. Use of (2.22)–(2.24) leads to an equation for the width
(a + b) of the current

G((a + b) | h0; r; q; Q; Q1)

= 1
2

{
(1 + 2r−1)[cosh(|q|1/2(a + b)) − 1]

|q|1/2 sinh(|q|1/2(a + b))

}2

− (1 + 2r−1)[cosh(|q|1/2(a + b)) − 1]
r|q|1/2 sinh(|q|1/2(a + b))

(a + b)

+ r + 2
4r2 [(a + b)2 + (a − b)2] + |q|Q1

2
− |q|Q − |q|−1 + h0 = 0, (2.25)

where (a − b) is connected with (a + b) via (2.22)

(a − b) = |q|rQ1

1 + 2r−1 {2|q|−1/2[sinh−1(|q|1/2(a + b))

− coth(|q|1/2(a + b))] + (a + b)}−1. (2.26)

The dimensionalized form of (2.25) is G∗((a∗ + b∗) | h∗
0;α; D∞; Q∗; Q∗

1) = 0. The critical
condition can be achieved by taking ∂G/∂(a + b)|c = 0

2(1 + 2r−1
c )2

|q|2r2
c

[csch(|q|1/2(a + b)c) − coth(|q|1/2(a + b)c)]

× {|q|−1/2(rc + 2) csch(|q|1/2(a + b)c)[csch(|q|1/2(a + b)c) − coth(|q|1/2(a + b)c)]

+ |q|−1/2 + (a + b)c csch(|q|1/2(a + b)c)} + (1 + 2r−1
c )2

|q|2r2
c

(a + b)c

= 2csch(|q|1/2(a + b)c)[csch(|q|1/2(a + b)c) − coth(|q|1/2(a + b)c)] + 1
{2q−1/2[csch(|q|1/2(a + b)c) − coth(|q|1/2(a + b)c)] + (a + b)c}3 Q2

1c
,

(2.27)

where all variables with subscript c denote quantities evaluated at the critical section.
Solving the controlled volume flux Q1c by eliminating (a + b)c between G((a +
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Figure 3. The theoretical critical transport Q1c in the rectangular channel is contoured as a function of the
channel width wc and bottom height hc at the critical section (sill). The upstream condition is set by the potential
vorticity (q = −1) and volume transport (Q = 0.5) of the upstream inflow. The transport to the east of the island
is Q − Q1c . Above the curve Q1c = 0 the channel flow is topographically blocked; below the curve Q1c = 0.5
the volume transport in the channel exceeds that of the upstream flow and the theory is considered invalid
(dark shades). The flow is separated from the eastern wall to the right of the dashed curve (light shades). The
triangles show the predicted Q1c for the Samoan Passage topography.

b)c | h0c; rc; q; Q; Q1c) and (2.27) is not easy. Instead, we solve the critical level of (a + b)c
numerically by optimizing Q1c while satisfying the constraints (2.25)–(2.27) using the
interior-point algorithm (Byrd, Gilbert & Nocedal 2000).

2.3. Dependence of the flow variable on geometry
The theory described in §§ 2.1 and in 2.2 can be employed to predict the partitioning
of the inflow transport Q given the upstream conditions (q and Q) for different sill
topographic parameters (wc and hc for a rectangular cross-section or rc and h0c for a
parabolic cross-section). Furthermore, various topographic regimes can be characterized
by the different features of the flow as shown in figures 3 and 4(a). Only results for the
upstream conditions q = −1 and Q = 0.5 are shown, which are selected to represent the
inflow upstream of the Samoan Passage (see the Samoan Passage application in more detail
in § 4.1). Different q and Q yield qualitatively similar regime boundaries.

Figure 3 suggests four separate regimes. Above the Q1c = 0 contour, the flow is
topographically blocked by the sill. In the regime below the Q1c = 0.5 contour, the
predicted critical transport Q1c is larger than the inflow transport Q, meaning that part of
the transport must be sourced from regions to the east or north of the island. If this is the
case, the potential vorticity of the channel flow is partially set by downstream conditions,
and the stagnation point (P in figure 2a) would no longer exist. We have elected not to
venture into this regime since the conditions do not seem realistic. In the regime lying to
the right of the dashed curve, the flow is separated from the eastern wall at the sill section.
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Hydraulic control of flow in a multi-passage system

Therefore the flow is controlled only by the bottom elevation hc while Q1c remains constant
for an increasing wc. However, historical laboratory experiments (Shen 1981; Pratt 1987)
and numerical simulations (Pratt, Helfrich & Chassignet 2000) have both suggested that
hydraulic control of separated sill flows is very difficult to establish, so this regime may
only exist in theory. In the regime lying between the Q1c = 0 and Q1c = 0.5 contours, and
on the left of the separation curve, the flow in the channel is hydraulically controlled and
Q1c decreases with increasing hc and decreasing wc.

As shown in figure 4(a), there are four topographic regimes for flow in the channel
with a parabolic cross-section. Similar to the rectangular cross-section case, the flow is
likely to be blocked by the sill in the regime of large h0c (especially when h0c ≥ 1.4),
where the theory predicted Q1c is very close to zero. In the topographic regime below the
Q1c = 0.5 contour, the predicted Q1c is larger than Q, and the theory is again considered
invalid. Different from the rectangular cross-section case, there is no boundary separation
for a flow in a channel with varying topography. However, for a wide channel with rc
lying on the right of the dashed curve, the theory produces a southward flow at the
western boundary of the channel, suggesting a reversal circulation. One may imagine that
a stagnation point must be located upstream of the sill at the western boundary, which
connects the streamline following the western boundary and the streamline that constitutes
the other boundary of the reversal circulation. In the final regime (left of the dashed
curve, above Q1c = 0.5 and moderate h0c), the predicted channel flow is hydraulically
controlled.

3. Numerical exploration of time-dependent hydraulic adjustment

The theoretical model described in § 2 is limited to a steady, semigeostrophically balanced,
inviscid channel flow. Most importantly, it assumes that the flow in the channel is
hydraulically controlled under certain given upstream conditions despite the possible
influence from the flow to the east of the island. As sketched in figure 1(a), a Kelvin
wave or a frontal wave may propagate into the channel from downstream and, if it is large
enough, alter the flow at the sill. In this section, we turn to a numerical model and show
that persistent hydraulic control in the channel requires a certain amount of frictional drag
acting on the flow to the east of the island. This result is anticipated by the circulation
integral described in the introduction. Since a varying bottom topography is more realistic
than vertical walls in the ocean, numerical experiments in this section are designed only
to study flow passing a parabolic channel.

3.1. Numerical method
The numerical model used for this study was first described in Helfrich, Kuo & Pratt
(1999) in a study of the nonlinear Rossby adjustment problem in a rotating channel. The
model solves the non-dimensional shallow-water equations in flux form

∂

∂t
(ud) + ∂

∂x

(
u2d + 1

2
d2

)
+ ∂

∂y
(uvd) − sign( f )vd + d

∂h
∂x

= −λud, (3.1)

∂

∂t
(vd) + ∂

∂y

(
v2d + 1

2
d2

)
+ ∂

∂x
(uvd) + sign( f )ud + d

∂h
∂y

= −λvd, (3.2)

∂d
∂t

+ ∂

∂x
(ud) + ∂

∂y
(vd) = 0, (3.3)
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Figure 4. (a) Value of Q1c as a function of rc and h0c for a hydraulically controlled flow in a parabolic channel
from theory (contours). The inflow has a potential vorticity of q = −1, and a transport of Q = 0.5. The flow
tends to be blocked by the sill in the regime of large h0c. Below the Q1c = 0.5 contour is the regime where the
theory becomes no longer valid (dark shades). On the right of the dashed grey curve, the predicted channel flow
at the western boundary is southward, suggesting a reversal circulation (light shades). Numbers in black and
red are results from the theory and numerical model, respectively; ‘nan’ (dark shades) represents null values.
Insets (b–i) show the time-mean (100 ≤ t ≤ 400) northward velocity v (red suggesting positive) and interface
height d + h (black contours) in the channel of selected topographic parameters from the numerical simulation.

where λ is the Rayleigh friction coefficient. Here, we choose to work with a linear
parameterization of the bottom friction (or the ‘Rayleigh friction’ representing the
momentum loss in a bottom Ekman layer) because it is more numerically stable than the
more commonly used quadratic bottom drag. The model allows for ‘dry regions’ (defined
by layer thickness d < 10−4) and permits the formation of sharp hydraulic jumps and
bores, at the same time ensuring that the proper shock-joining conditions on mass and
momentum flux are satisfied. The model assumes constant background rotation (f -plane
physics) and the x-direction (cross-channel) and y-direction (along-channel) continue to
act as eastward and northward coordinates. The non-dimensional variables in the model
have been formed using slightly different scaling than that given in the theory. In particular
(i) lengths in the x-direction and the y-direction are both scaled by the Rossby radius of
deformation Ld and therefore u and v are both scaled by the free long gravity wave speed√

g′D (i.e. non-semigeostrophic; |v/u| ∼ O(1)); (ii) the time is scaled by 1/|f | (i.e. time
dependent); (iii) λ is scaled by |f |.

As shown in figure 5(a), a channel with a parabolic cross-section is introduced between
the island and the western boundary of the model domain (figure 5b). The channel contains
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Figure 5. (a) Model domain and topography. The initial layer surface (d + h = 1) is represented by a light blue
sheet. (b) The cross-channel topography at ys = 35, looking towards downstream. The channel is parabolic.
(c) The side view of a section across the deepest point in the channel, showing the along-channel Gaussian
topography. The topographic parameters σs, σi and xi are set to 5, 5 and 30, respectively.

an obstacle having a Gaussian shape in the along-channel direction (figure 5c)

h(x, y) =
[

hs + (x − xs)
2

rs

]
e−( y−ys)

2/2σ 2
s , 0 ≤ x ≤ 2xs, (3.4)

where (xs, ys) and (rs, hs) denote the location and the topographic parameters of the
topographic saddle point (sill), respectively, and σs indicates the channel length. The
sloping western sidewall in the channel joins continuously to the vertical sidewalls of the
western boundary north and south of the channel. A logistic function (figure 5b) makes up
the sloping eastern boundary of the island, which gradually joins the sea bottom

h(x, y) = 1
1 + e(x−xi)/σi

h(0, y), x > 2xs, (3.5)

where xi and σi indicate the starting point of the island’s eastern slope and the span of the
slope, respectively.

We consider a set of simulations in which the flow in the interior of the domain is
initially at rest, and the interface height d + h is set to unity. At t = 0, a steady, northward,
geostrophically balanced flow with total volume flux Q = 0.5 and with potential vorticity
q = −1 is introduced across the southern boundary of the model domain. The profiles of
northward velocity and layer thickness take the form of the boundary current described
by (2.4). The boundary conditions at the western and eastern walls of the domain are
free slip and no normal flux, and radiation conditions (Orlanski 1976) are used at the
northern boundary of the domain. The numerical domain is 60 units in both the x-direction
and the y-direction, with spacing in the y-direction of �y = 0.1. The cross-channel grid
spacing and time steps range from (�x = 0.1 and �t = 0.01) for wide channels with rs >

1 to (�x = 0.05 and �t = 0.002) for narrow channels with rs < 1. The validity of the
numerical results was tested by reducing �x, �y and �t by one half and by doubling the
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range of x and y while maintaining the same channel and island geometry. The former set
of experiments can better resolve features in regions of hydraulic transients (see § 3.3) but
also show more oscillations near discontinuities. Besides these small oscillations, all test
runs show essentially the same overall flow patterns as models used for the analysis.

3.2. Friction and no-friction experiments
Several friction and no-friction numerical runs were made for comparison with results
from the theory and to explore phenomena such as hydraulic transitions and signal
transmissions from downstream that are not addressed by the theory. In a no-friction
experiment, the Rayleigh friction coefficient λ is zero everywhere in the model domain. In
a friction experiment, λ is set to zero between the western wall (x = 0) and x = 15, which
includes the channel and much of the western boundary layer to keep the calculations close
to the inviscid theories, whereas λ = 0.2 is added to x > 15, which includes the boundary
layer on the east coast of the island.

Numerical results from two sets of topographic parameters (rs = 1.3, hs = 0.6) and
(rs = 0.2, hs = 0.6), which represent the Samoan Passage (see details in § 4.1) and a
nominal narrow channel, respectively, are examined closely. Time series of the volume
transport in the channel (Q1) and east of the island (Q2) were calculated at ys=35, the
latitude of both the sill and the minimum width in the channel. From inviscid theories, this
topographic saddle point coincides with the critical section (i.e. rc = rs, h0c = hs) had the
flow becomes hydraulically controlled in the channel (Pratt & Whitehead 2008, § 1.4).

3.2.1. Persistent hydraulic control in the friction experiments
As shown in figure 6(c,d,g,h), beginning at t ≈ 50, Q1 from the simulation becomes quite
close to the critical value Q1c predicted by the theory for (rc = rs, h0c = hs), suggesting
that the hydraulic control is established after the adjustment of Kelvin waves and frontal
waves to the topography of the channel (Pratt et al. 2000). The constant Q1 after t ≈ 50
persists until t ≈ 250, then Q1 from the no-friction experiments starts to drop, while Q1
from the friction experiments remains relatively unchanged. After t ≈ 400, the transport
calculated at the southern boundary of the model domain Q starts to show irregular
variations, which may be due to the contamination with Kelvin waves that are initialized
by the errors of the radiation boundary condition at the northern boundary of the domain
and propagate along the domain’s eastern boundary into the upstream section. The small
decrease in Q1 after t ≈ 400 in figure 6(c) is likely due to the same process. Aside from
these numerical artifacts, only the friction experiments yield persistent hydraulic control,
while the no-friction experiments show a continuous transport adjustment. In fact, Q1 in
figure 6(g,h) continues to decrease towards zero as we run the simulation until t = 2000
(not shown). We have run experiments with λ = 0.2 everywhere of the model domain and
also found a persistent hydraulic control in the channel, except for the magnitude difference
in Q1 due to the friction-induced flow spindown (not shown).

3.2.2. Transport adjustment by frontal waves in the no-friction experiments
In order to examine the role that transients may play in the transport adjustment, we show
Hovmöller diagrams of the interface height d + h along two circuits: one following the
western boundary of the channel (the cyan dashed curve in figure 6a,b) and the other
circling the island (the green dashed curve in figure 6a,b). Both of the circuits are isobaths
with h = 0.6. The coastal trapped waves that propagate along these circuits see zero layer
thickness along the respective in-shore edges and are similar to the frontal waves described
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Figure 6. Numerical results from the (a–d) friction experiments (Rayleigh friction added to x > 15) and the
(e–h) no-friction experiments. (a,e) Flow speed

√
u2 + v2 at t = 800, with colour bar shown at the upper right

corner of (a). The interface heights d + h of 1.2 and 1.4 are marked with thick black contours. The bathymetry
contours h = 0.6 along the western boundary of the channel and around the island are shown by the cyan and
green dashed curves respectively in (a) and partly in (b). (b, f ) A magnified view of the modelled flow in the
channel (x ∈ [0, 6]). Meridional velocity v is shown in colours (red for northward flow and blue for southward
flow, with colour bar shown at the lower left corner of (b)). The d + h contours are shown at 0.1 intervals.
The grey lines indicate the location of the sill. Panels (a,b,e, f ) are all for topographic parameters (rs = 1.3,
hs = 0.6). Volume transport time series for parameters (rs = 1.3, hs = 0.6) (c,g) and (rs = 0.2, hs = 0.6) (d,h).
Here, Q, Q1 and Q2 represent the transport of the flow in the upstream basin, in the channel and along the
eastern flank of the island, respectively. Theory predictions Q1c for a hydraulically controlled channel flow at
(rc = rs, h0c = hs) are indicated by the dashed lines.

by Stern (1980). Like southern hemisphere Kelvin waves, they tend to propagate with the
boundary to their left, at least in the absence of a mean flow. The Hovmöller diagrams for
the west circuit figure 7(a,c), show that a set of these waves arrives in the channel prior to
t ≈ 50, carrying with them the initial surge in transport and establishing hydraulic control
at the sill. In the friction experiments, after the hydraulic control is established, d + h
in regions upstream of and at the sill remains relatively constant with time. The closed
contours downstream of the sill denote eddies (also seen in figure 6b). However, in the
no-friction experiments, d + h changes significantly in regions upstream of and at the sill
after t ≈ 250 and eddy formation ceases downstream of the sill.

The evolving interface elevation d + h along the east circuit is shown in figures 7(b) and
7(d). For the case without friction, figure 7(d), the leading edge of frontal waves circles the
island (counter-clockwise along segment P1–P2) with a speed of c ≈ 0.3 and penetrates
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Figure 7. Time evolution of the interface height (d + h) at the bathymetry contour h = 0.6 (a,c) along the
western boundary of the channel (west circuit: cyan dashed curve in figure 6a) and (b,d) around the island
(east circuit: green dashed curve in figure 6a). Panels (a,b), (c,d) show results from the friction and no-friction
experiments, respectively. Both experiments use topographic parameters (rs = 1.3, hs = 0.6). The y coordinate
in (a,c) is the distance from the most upstream point of the west circuit, in (b, d) is the distance from P1 around
the island in a counter-clockwise direction. The contour interval is 0.05. The frontal waves that propagate
counter-clockwise along the island and penetrate the channel from downstream are highlighted in a grey arrow
in (d) with the phase speed marked (c = 0.3).

back up into the channel at t ≈ 300 with a seemingly higher speed (segment P2–sill–P1).
Thereafter, d + h gradually increases between P2 and the sill, leading to flooding of the
hydraulic control at the sill. Comparison with figure 6(e, f ), reveals the presence of a
circum-island flow, in particular, some southward penetration of this flow back into the
channel from the north. In the friction experiments, the frontal waves along the east circuit
disperse due to the frictional drags and do not appear to enter the channel (figure 7b). This
may be explained by the diffusive boundary layer as a result of bottom friction derived
by Pratt (1997), whose width expands proportionally with the square root of the distance
from the flow source.
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Figure 8. Same as in figure 4, but insets for v and d + h at the sill (ys). Red vectors and curves are analytical
solutions from the theory. Blue vectors and areas are results from numerical runs averaged over 100 ≤ t ≤ 400.

3.2.3. Comparing theory with model
Here, we confine attention to the friction model output, since the no-friction model
does not support a steady-state hydraulic control in the channel. Time-averaged Q1 from
t = 300 to t = 400 has been calculated at selected topographic parameters (triangles in
figures 4a and 8a), and the numerical results are compared with Q1c predicted by the
theory at (rc = rs, h0c = hs). Horizontal and cross-sectional flow structures are shown in
the insets in figures 4 and 8, respectively. The most notable difference in flow structures
between model and theory is in the regime to the right of the dashed curve in figures 4(a)
and 8(a), where the theory predicts a southward flow at the western boundary of the
channel (red arrows in figure 8g,h,i) while the model produces a jet-like flow positioned
in the centre of the channel (blue arrows in figure 8g,h,i). Besides these differences, the
model and theory produce similar Q1 above the Q1c = 0.5 isocontour (light shaded area).
Below the Q1c = 0.5 isocontour (dark shaded area), where the theory is formally invalid,
the predicted Q1c from theory is much larger than the inflow transport of 0.5 but the model
yields Q1 values close to 0.5.

3.3. Hydraulic transition in the friction experiments
Hydraulic jumps in rotating systems have been studied primarily in channels with
rectangular cross-sections. A variety of structures have been found, including jumps that
resemble a stationary Kelvin bore (Pratt 1983; Pratt et al. 2000). If the approaching
supercritical flow is separated from one of the sidewalls of the channel, the jump can take
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the form of a sudden expansion in the flow width, so that the downstream (subcritical state)
has finite depth all across the channel (Pratt 1987; Pratt et al. 2000; Pratt, Riemenschneider
& Helfrich 2007). In the latter case, the abrupt change in fluid depth that typically occurs
across a jump is absent: depth changes may occur but they are more gradual. Here we
will show that supercritical-to-subcritical transitions occur in the friction experiments,
the novel feature being that they occur in a channel with a rounded cross-section. In this
subsection, numerical results are averaged from t = 100 to t = 800.

3.3.1. A subcritical-to-supercritical-to-subcritical transition of the channel flow
In order to assess the flow criticality within the channel, we have computed the eigenmodes
(the cross-stream structures of wave amplitudes) and corresponding propagation speeds
of waves (eigenvalues) at positions along the channel following Pratt et al. (2007). Each
mode corresponds to a pair of waves, and we are particularly interested in long frontal
waves, in which the two members of a pair are trapped to opposite edges. The linear
wave mode calculation has been done by assuming a parallel flow in a steady state and
including a small viscous term in the perturbation equations as detailed in Appendix A.
The background flow velocity V(x) is the time-averaged meridional velocity from various
numerical runs and the background profile of the flow thickness D(x) is computed by
integrating −V(x) − hx, in accordance with the semi-geostrophic balance relations (2.2).
This is to avoid the large Dx at the edges of the flow due to the numerical scheme in which
a very thin layer of water (d = 0.0001) was placed on top of the ‘dry’ areas.

As shown in figure 9, the lowest modes (0th modes: modes with no zero crossings)
correspond to a pair of frontal waves that decay from the western (v̂+ in figure 9b,e,h)
and eastern (v̂− in figure 9c, f,i) edges of the flow. These waves tend to propagate in
the downstream and upstream directions, respectively, provided that the background flow
is stagnant. If that was the case, the flow is subcritical everywhere in all presented
simulations. However, with the presence of the background flow, some of these waves
may become stationary or propagate backward, thus hydraulic transitions may occur. In
the no-friction experiments, the two frontal waves are found to propagate in opposite
directions throughout the channel (figure 9g), indicating subcritical flow throughout
the channel, at least with respect to the lowest modes. In the friction experiments, for
topographic parameters representing the Samoan Passage (rs = 1.3, hs = 0.6), a transition
from subcritical to critical to supercritical occurs near the sill (34 < y < 35.5) (figure 9a).
The supercritical flow then terminates in an abrupt transition back to subcritical flow (y ≈
36). In the narrow-channel experiments (rs = 0.2, hs = 0.6), the transition from subcritical
to supercritical occurs more upstream of the sill and the supercritical flow occupies a larger
range in y. A transition back to subcritical flow occurs further downstream of the sill
(figure 9d). Nevertheless, this hydraulic transition of flow confirms that the channel flow
in the friction experiments is, in fact, hydraulically controlled, an essential assumption of
the theory proposed in § 2.

3.3.2. The change in energy and potential vorticity through the hydraulic transition
The supercritical-to-subcritical hydraulic transition that occurs immediately downstream
of the sill in the friction experiments shows very different characteristics from hydraulic
jumps in rotating channels with rectangular cross-sections in that (i) streamlines over the
sill do not show a sudden expansion in width (figure 10a); (ii) the interface height of
flow does not show an abrupt ‘jump’ (figure 10b). Despite the gradual variations in flow
characteristics across the hydraulic transition, it is of interest to see how much energy
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Figure 9. The left (a–c), middle (d–f ) and right (g–i) panels show modal results calculated from time-mean
model output from the friction experiment, friction experiment for a narrow-channel case and no-friction
experiment, respectively. Here, hs = 0.6 for all three experiments. The top panels show the phase speeds (cr,
the subscript ()r denotes the real component) for the lowest modes along the channel. The bottom panels show
the cross-sectional structure of the eigenfunction v̂ normalized by its maximum for the lowest mode. The solid
black curves, thick grey curves and dashed black curves represent modes at an upstream section y = 32, the sill
y = 35 and a downstream section y = 38, respectively (see a, d, g). For a pair of frontal wave modes, v̂+ and
v̂− correspond to waves that are downstream propagating and upstream propagating relative to the background
flow, respectively.
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Figure 10. Time-averaged results from the friction experiment for the Samoan Passage topographic parameters
(rs = 1.3, hs = 0.6). (a) Transport streamlines with Ψ ranging between −0.5 and −0.42 (dashed black
contours) and between −0.38 and −0.28 (solid black contours). The contour interval is 0.02. (b) The magnitude
of transport |ud| (colours) and the interface height d + h (thin black contours). The thick dashed black curves
and solid black curves in (a) and (b) represent streamlines Ψ = −0.46 and Ψ = −0.3, respectively. Flow
properties along the two streamlines are shown in (c–f ). The grey horizontal lines in (a,b) and vertical lines in
(c–f ) mark the location of the sill.

dissipation occurs in the transition and to further assess the implications for the distribution
of potential vorticity in the flow. We will demonstrate in § 3.4 that the persistent hydraulic
control in the friction experiments is a result of the frictional dissipation along the island
balancing the energy dissipation in the hydraulic transition.
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We have based our theory in § 2 on the criteria that for an inviscid, steady flow, B is
conserved along a streamline and q remains constant (2.9). As shown in figure 10(e, f ), B
and q indeed remain constant along the two selected streamlines shown in figure 10(a,b)
until slightly downstream of the sill. Note that the results are from the friction experiments
where friction is added only to the east of the island and the flow is inviscid in the channel.
We know from the wave mode analysis that a transition of flow from subcritical to critical
to supercritical takes place near the sill, which is consistent with the descending flow
surface (figure 10c) and the flow acceleration (figure 10d) along streamlines. As the flow
passes the sill and across the region of hydraulic transition from supercritical to subcritical,
both B and q decrease along streamlines. The acceleration ceases while the flow continues
to descend. Since only frontal waves that decay from the eastern edge of the flow change
directions across the hydraulic transition and thus contribute to the hydraulic transition, it
is not surprising that changes in B and q along the streamline near the eastern edge of the
flow exceed those along the streamline near the western boundary of the channel.

To assess the distribution of potential vorticity in the flow, we show in figure 11(b) q
at sections upstream of the sill, at the sill and downstream of the sill, respectively. In the
channel with smoothly varying cross-section, d goes to zero at the flow edges and can
result in extreme q and B (figure 11a–c). Away from the flow edges, q remains at its initial
value imposed at the southern boundary of the model domain upstream of and at the sill,
but it is reduced significantly after the supercritical-to-subcritical transition is passed. The
change in q across a hydraulic jump in a rotating channel can be calculated from the energy
dissipation from shock theory (Pratt 1983)

〈q〉 = d〈B〉
dΨ

, (3.6)

where 〈()〉 = limε→0[()2 − ()1] represents the change in the indicated property across a
shock. Although our model does not show a typical shock, we can still quantitatively
estimate the change in q by applying (3.6) to the region containing the hydraulic transition.
From model output, we estimate 〈B〉 and 〈q〉 from the differences between a downstream
section y = 40 and the sill y = 35 (‘×’ symbols in figure 11d,e), and between the sill
and a upstream section y = 30 (‘+’ symbols), respectively. Over 35 ≤ y ≤ 40, 〈B〉 and
〈q〉 both show a large magnitude at larger Ψ , which corresponds to streamlines near the
eastern edge of the flow; 〈q〉 calculated from (3.6) overestimates but agrees with the order
of magnitude of change (lower solid curve in figure 11d). On the contrary, 〈q〉 computed
over 30 ≤ y ≤ 35 and predicted from theory (upper solid curve in figure 11d) are both near
zero. This further confirms the existence of a dissipative hydraulic transition downstream
of the sill, across which the potential vorticity decreases. Since the friction model contains
no explicit friction in this region, the dissipation must arise from implicit dissipation due
to the numerical scheme. The same is true for in past simulations using the same model,
e.g. Pratt et al. (2000).

3.4. The hydraulics of splitting flow
The circulation integral (1.1) expresses the need for friction to act on the east side of the
island in order to support a steady, hydraulically controlled flow in the channel. We now
return to the steady form of this integral as it applies in the numerical model∮

Cl

( f + ζ )u · n ds = δB −
∮

Cl

λu · l ds, (3.7)
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Figure 11. (a–c) Flow thickness d, potential vorticity q and Bernoulli function B at the southern boundary of
the model domain y = 0 (dotted curves), the upstream channel entrance at y = 30 (solid black curves), the sill
at y = 35 (grey thick curves) and a downstream section at y = 40 (dashed black curves). Triangles and circles
mark locations of streamlines Ψ = −0.46 (thick dashed curves in figure 10a,b) and Ψ = −0.3 (thick solid
curves in figure 10a,b), respectively. (d,e) Along-streamline change in q and B between the sill and the upstream
section (‘+’ symbols) and between the downstream section and the sill (‘×’ symbols), respectively. Results are
from the time-averaged friction model output for topographic parameters (rs = 1.3, hs = 0.6), except that the
solid curves in (d) are predictions from shock theory.

and contrast the various terms and balances that arise in the friction and no-friction
experiments. In both model settings, the island topography varies smoothly. Therefore,
at the edge of the flow, the layer thickness vanishes and values of velocity are particularly
susceptible to numerical noise. With this in mind, we have opted to consider an alternative
contour Cl that lies slightly offshore of the island where the layer depth is finite and noise
is a minor issue. The constructed Cl consists of a streamline that coincides with the eastern
edge of the flow in the channel S4, a streamline around the island S2, a meridional segment
S1 and a zonal segment S3 that connect S2 and S4 at the entrance and downstream of
the channel, respectively (figure 12a). The transport streamfunction and all the variables
in (3.7) are computed from the friction model output averaged over 100 ≤ t ≤ 800. The
Rayleigh friction coefficient λ was set to zero within the channel and 0.2 at x > 15 for
the friction experiments, therefore the integrations of the friction term along S1 and S4 are
both zero. Equation (3.7) can then be re-written as

−
∫

S1

q(ud) dy +
∫

S3

q(vd) dx = δB −
∫

S2

λu · l ds +
∫

S3

λu dx. (3.8)

We calculate the terms in (3.8) using several, slightly different, choices of the integration
contour; S2 and S4 are defined to coincide with Ψ ranging from −0.1 to −0.02 and
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Figure 12. (a) An example of an integration contour for Kelvin’s circulation theorem analysis: S1 along x =
2.1, S2 the streamline of Ψ = −0.1, S3 along y = 45.9 and S4 the streamline of Ψ = −0.3. (b) Terms of
the simplified Kelvin circulation theorem for a steady flow as expressed in (3.8). Results are calculated from
different choices of integration circuits and shown with black vertical lines as ± one standard deviation about
the mean. Also shown are the sum of terms on the left-hand side (LH) of (3.8), the sum of the right-hand side
(RH) terms and the difference between the two terms (LH-RH). (a) and (b) are both from the time-averaged
friction model output. (c) Same as in (b) but for the terms calculated from the no-friction model output averages.
Topographic parameters for both experiments are (rs = 1.3, hs = 0.6).

−0.38 to −0.24, respectively; S1 and S3 are chosen to lie in the range of 1 ≤ x ≤ 3 and
44 ≤ y ≤ 50, respectively. Bringing together the terms in (3.8) calculated from all the
choices of integration circuits shows that the left and right sides of the equation are nearly
balanced (figure 12b). In particular, the positive Bernoulli difference between upstream
and downstream of the hydraulic transition is primarily balanced by the negative bottom
friction integral.

For comparison, we compute the transport streamfunction from the time-averaged
no-friction numerical model results and calculate all the terms in (3.8) (figure 12c).
Choices for the integration contour are the same as for the friction model results, except
that we restrict S4 to a more limited range of Ψ , −0.38 to −0.32 due to the large noise near
the eastern edge of the flow. For the no-friction experiments, the frictional dissipation term
is exactly zero. The gain of potential vorticity is also very close to zero with very small
variance. A positive time evolution term (∂/∂t)

∮
Cl

u · l ds is needed to balance the small
but positive δB, which explains the accelerating counter-clockwise circulation around the
island shown in figure 6(e).

4. Samoan Passage

It has been revealed from recent observations that the Samoan Passage overflow is
hydraulically controlled over a series of sills (Alford et al. 2013), justifying the use of
hydraulic theory to predict the partitioning of transport between the Samoan Passage and
the eastern Manihiki Plateau.

As summarized in table 1, Whitehead (1998) treated the Samoan Passage as the only
pathway of flow between two basins and neglected the existence of the path along the
eastern flank of the Manihiki Plateau. The author used a ‘wide-channel’ assumption (i.e. a
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Hydraulic control of flow in a multi-passage system

Study Theory Requirements Transport

Whitehead
(1998) and
Freeland
(2001)

Zero PV, wide channel, critical
condition imposed

Flow stratification, sill
bathymetry

7.0 and 5.7 Sv

Girton et al.
(2019)

Uniform, non-zero PV, actual
topographic structure of the
channel’s cross-section (multiple
sills), critical condition not
imposed

Cross-sectional hydrographic
measurements (for the interface
height and slope), upstream
layer thickness (for PV)

4.3 Sv

Pratt et al.
(2019)

Frictional island rule, PV varying
with latitude, no need to specify
the channel width and shape,
critical condition not imposed

Interior basin upwelling rate,
bottom drag along the western
side of the island, dissipation
measurements in the passage

6.5–8.5 Sv (subtract
0.4–2.4 Sv bypass
flow and 1.1 Sv
Robbie Ridge flow
from 9.9 Sv inflow)

Extension
of Gill’s
model

Uniform, non-zero PV,
rectangular or parabolic channel,
critical condition imposed

Flow stratification, sill
bathymetry, upstream layer
thickness (for PV), upstream
flow transport

6.0–7.4 Sv

Table 1. Volume transport through the Samoan Passage from different theories. PV stands for potential
vorticity.

channel being much wider than the Rossby radius of deformation) and proposed a formula
to estimate the transport of the controlled flow assuming zero potential vorticity (i.e. flow
originated from an infinitely deep reservoir). A more detailed model from Girton et al.
(2019) used the realistic cross-passage topography and considered a flow with non-zero
potential vorticity. However, the model ignores flows around Manihiki Plateau and no
critical condition is imposed, meaning that the estimated transport may not correspond to
the hydraulically controlled flow and thus is smaller than other estimates from hydraulic
theory. The model also requires considerable hydrographic measurements across the
passage, which is not advantageous for long-term monitoring of transport. Pratt et al.
(2019) considered the pathway east of Manihiki and used an extended form of the Island
Rule (Godfrey 1989) to assess the transport partitioning of the northward deep western
boundary current (DWBC). Although their formulation does not explicitly require nor
lead to the presence of hydraulic control in the Samoan Passage, the transport prediction
does rely on measurements of the turbulent dissipation there, a process that is amplified by
hydraulic jumps downstream of the sills, and these exist only in the presence of hydraulic
control. Moreover, their predicted transport depends upon, and is quite sensitive to, the
value of the bottom drag coefficient around the island.

The theory we put forth in § 2 can also be employed to compute the hydraulically
controlled transport in the Samoan Passage provided that the flow is of uniform potential
vorticity and the cross-section topography can be simplified as a rectangle or a parabola.
The excess transport of the northward DWBC is diverted east of the Manihiki Plateau
and its value is obtained by subtracting the transport through the Samoan Passage from
the total transport of the inflow. We particularly note that the flow in the Samoan Passage
is hydraulically controlled whereas the branch to the east of the Manihiki Plateau is not,
and the persisting hydraulic control in the Samoan Passage is accompanied by persisting
turbulent mixing associated with hydraulic jumps downstream of the sills (Cusack et al.
2019). As detailed in § 3, friction along the eastern boundary of the plateau is required not
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only to support such a regime but also to support the decrease in Bernoulli function across
the hydraulic transition of the controlled branch. Therefore, we consider for the Samoan
Passage case the coastline of the Manihiki Plateau must be long enough, or the actual value
of the friction coefficient must be large enough or both, for the existence of the persisting
hydraulic control and the persisting hydraulic jump. The predicted division of transport
from our theory does not depend on the values of the friction coefficient nor the size of
the island, which is different from the model in Pratt et al. (2019).

4.1. Samoan Passage transport from theory
In the non-dimensional version of our theory, the potential vorticity q and the upstream
inflow volume flux Q are upstream conditions required to estimate the critical transport
through the channel Q1c. In the dimensionalized form, the potential depth D∞ serves
as one upstream condition required for our theory. The interface of the Samoan Passage
overflow is chosen to be the 1 ◦C isotherm, the most commonly accepted upper boundary
of the DWBC in the Southern Pacific Ocean (Reid & Lonsdale 1974; Rudnick 1997).
Based on this, D∞ = 1000 m is determined according to the layer thickness below the
1 ◦C isotherm at the entrance to the passage (bottom depth ∼5200 m taken from figure 3 in
Pratt et al. 2019 and figure 2 in Voet et al. 2015). For the other upstream condition, we took
the total transport below the 1.0 ◦C isotherm (Q∗ = 9.9 Sv) from Roemmich et al. (1996)
based on hydrographic measurements along a section crossing the Samoan Passage and the
Manihiki Plateau. Note that we ignored the existence of the Robbie Ridge, which contains
a transport of 1.1 Sv in Roemmich et al. (1996), and assumed that the total transport of
9.9 Sv is partitioned between the Samoan Passage and east of the Manihiki Plateau. Values
of g′ and f are also required for the transport estimation, which are taken from Girton
et al. (2019) (4 × 10−4 m s−2) and estimated at 8 ◦S (2 × 10−5 s−1), respectively. Given
a generic depth scaling in the channel D = 1000 m yields Ld ≈ 31 km and dimensionless
upstream conditions q = −1 and Q ≈ 0.5. Note that the resulting Q∗

1c in the dimensional
form does not depend on the value of D.

Additional to upstream conditions, geometric parameters of the critical section are
needed to estimate Q∗

1c. Here, we assume that the critical section lies at the sill according
to the inviscid hydraulic theory. Observations have shown that the transport in the
Samoan Passage splits into two major pathways, each with multiple contractions and sills
(Voet et al. 2015; Girton et al. 2019). From a visual inspection of figure 3 in Girton
et al. (2019), the 1.0 ◦C isotherm is located near 4000 m and spans over a distance of
approximately 20 and 40 km at the western path sill (P2) and the eastern path sill (P4),
respectively (also see in figure 1c,d). The two sills are approximately 600 and 400 m
above the sea bottom depth at the entrance to the Samoan Passage. When determining the
topographic parameters representing the Samoan Passage, we treated the two pathways
as one channel with a sill height of 600 m and a width of 50 km, and further assumed
that the contraction in the channel width is located at the sill. Values of h∗

c = 600 m and
w∗

c = 50 km are considered as geometric parameters at the critical section and used in
estimating the overflow transport from theory. Non-dimensional versions are hc = 0.6 and
wc ≈ 1.6, respectively. For comparison, we also estimated the transport partitioning for the
narrow- and shallow-channel limit (hc = 0.6, wc = 0.6) and the wide- and deep-channel
limit (hc = 0.4, wc = 1.6). Considering that our estimate of the local geometry is rather
subjective, the range of estimates can be seen as an uncertainty estimate to some extent. We
then fit the Samoan Passage to a parabola by assuming w∗

c to be the width of the overflow
interface and d∗

c = 500 m to be the thickness of flow between the deepest point of the
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Hydraulic control of flow in a multi-passage system

parabola and the interface. The latter value is taken from figure 3 in Girton et al. (2019).
The curvature parameter is α ≈ 8 × 10−7 m−1, or in the non-dimensional form rc ≈ 1.3,
and the non-dimensional sill height at the bottom of the parabola is h0c = 0.6. The two
limits for sensitivity test are (h0c = 0.6, rc = 0.2) and (h0c = 0.4, rc = 1.3), respectively.

Our theory for a rectangular channel yields a transport in the Samoan Passage of Q∗
1c =

7.4 Sv (Q1c ≈ 0.38), and the sensitivity test yields transports of 4.3 and 10.2 Sv (Q1c ≈
0.22 and 0.52) for geometric parameters under narrow-channel limit and wide-channel
limit, respectively. To compare, the parabolic channel formulation predicts Q∗

1c = 6.0 Sv
(Q1c ≈ 0.3), and results from the sensitivity test are Q∗

1c = 3.3 and 8.5 Sv (Q1c ≈ 0.17
and 0.43). Transports estimated from the parabolic channel theory are smaller than
the estimates for a rectangular channel. As shown in figures 3 and 4(a), except for
the wide-channel limit, our selected topographic parameters are within the regime of a
hydraulically controlled flow. Overall, the theory-based transport estimates lie reasonably
close to the time-mean estimates of 5.4 Sv (Voet et al. 2016) and 6.0 Sv (Rudnick 1997)
obtained from moored measurements.

4.2. Two major pathways of flow in the Samoan Passage
Let us now consider a case where there are two narrow parabolic channels to the west
of the island, which is a more realistic representation for the Samoan Passage. The
western channel is narrower and shallower at the sill (w∗

W = 20 km, h0
∗
W = 600 m) and

the eastern channel (note the difference from the ‘eastern passage’, which refers to
the vast passage to the east of the island; the ‘eastern channel’ is part of the Samoan
Passage and thus is narrow) is wider and deeper at the sill (w∗

E = 40 km, h0
∗
E = 400 m)

(figure 13a,e). Dimensionless topographic parameters for the two channels are (rW ≈ 0.18,
h0W = 0.6) and (rE ≈ 0.72, h0E = 0.4), respectively. Whitehead (2003) proposed an
analytical solution to the partitioning of inflow among multiple channels by assuming
such a scenario that the meridional inflow tends to pass through the westernmost channel,
where the hydraulic control is preferentially established. The residuals of the inflow, as a
consequence, make their way to the second westernmost passage. If the flow in the second
westernmost channel is also hydraulically controlled and the critical transport combined
is less than the transport of the inflow, the residuals will enter the next passage to the east,
and so on for the rest of the eastern passages. In other words, the hydraulic control in a
western channel is independent of processes within the passages to its east. This scenario
has been adopted by Girton et al. (2019) to estimate the transport through the Samoan
Passage, although many historical numerical simulations (e.g. Helfrich & Pratt 2003) as
well as ours suggest that, even when the inflow approaches along the western wall, it veers
offshore and enters the channel from the eastern side, which is due to the topographic beta
effect.

Despite these flaws, here we give an estimate of transport in the two channels within
the Samoan Passage based on Whitehead (2003). We then compare the results with the
transport computed from the numerical simulations to evaluate the validity of the theory.
To implement the theory, first we compute the controlled transport in the western channel
using upstream conditions and the topographic features of the sill. Then we compute the
Bernoulli function along the eastern boundary of the western channel, which would be
the same as the Bernoulli function along the western boundary of the eastern channel
in the scenario suggested by Whitehead (2003). The along-boundary Bernoulli function
combined with sill topography provides enough information to compute the critical
transport of the eastern channel. Using this methodology, we compute a series of critical
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Figure 13. Numerical results from the friction experiments but with two channels. (a) Magnified view of the
northward velocity v (colour) and the interface height d + h (contours) in the channel at t = 400. Panels (b) and
(c) show the predicted transport (solid curves) and transport calculated from numerical simulations (dots) given
different widths and sill heights of the eastern channel, while keeping other topographic parameters unchanged.
Panels (a,d,e) are from the same model topographic parameters as indicated above (d). (d) Time series for the
transport of the inflow Q, total transport of the two channels Q1W + Q1E, transport in the western channel Q1W ,
transport in the eastern channel Q1E and transport along the eastern flank of the island Q2. Numerical results
and analytical solutions for the critical transport are shown in solid lines and dashed lines, respectively. (e)
Values of v and d + h at the sill (grey line in (a)). Red vectors and curves are analytical solutions from the
theory. Blue vectors and areas are results from numerical runs averaged over t = 100–400.

transports in the two channels by changing the width (figure 13b) or height (figure 13c) of
the eastern channel while keeping other topographic parameters unchanged.

Theory predicts transports of Q1W c ≈ 0.17 and Q1Ec ≈ 0.28, or dimensionally,
3.3 Sv and 5.6 Sv for the western channel and eastern channel in the Samoan Passage,
respectively. However, numerical results are both smaller than the theory predictions
(Q1W ≈ 0.13, Q1E ≈ 0.26; or dimensionally, 2.5 and 5.0 Sv), especially for the transport
in the western channel. By changing the topography of the eastern channel while
leaving the western channel unchanged, we find the difference between model results and
theoretical predictions is most evident when the eastern channel is wide and deep. Both
theory and model assume inviscid flow in the two channels, which allows frontal waves to
propagate along the boundary of the separation land of the two channels and connect the
two channels. In this case, the western channel is not independent from processes in the
eastern channel. However, since the mismatch between the theory and model is reasonably
small, especially when the eastern channel is of modest width and height, one may still
use the theory to estimate the transport.

5. Summary

This work has examined the hydraulics of a flow passing between ocean basins through a
twin passage, one narrow and containing a topographic sill, and the other broad, using
shallow-water theory and numerical simulations. We regard the Samoan Passage and
the Manihiki Plateau system in the Southern Hemisphere as a prototype, where the
northward-flowing DWBC splits into two flows: one entering the Samoan Passage and
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being hydraulically controlled by topography, the other passing to the east of Manihiki as
a boundary current that is likely not controlled. Our problem is different from historical
models such as Whitehead, Leetmaa & Knox (1974) and Gill (1977), which considered two
basins connected by a single channel, in that upstream disturbances such as Kelvin/frontal
waves initiated at the critical section do not propagate back into the upstream basin and
therefore do not exert any upstream influence. Those waves instead propagate along the
boundary of the island eventually arriving downstream, a feature that makes it possible to
specify the upstream transport independently of the characteristics of the sill.

In § 2, we propose formulae for both rectangular and parabolic channel cross-sections
that connect properties (potential vorticity and transport) of the upstream inflow (DWBC)
and the geometry of the sill (height and width) with the transport of the hydraulically
controlled flow in the channel. The channel flow is choked by topography, meaning that
not all the upstream transport can enter the channel. Had there been only one passage,
hydraulic adjustment would occur in the upstream basin as well as in the channel (Pratt
et al. 2000). In our case, the excess transport is carried by a boundary current that flows
along the eastern boundary of the island and joins the channel outflow in the downstream
basin. As long as the formulae successfully predict the critical transport in the Samoan
Passage, we can then simply subtract that transport from the total transport of the DWBC
to determine the transport to the east of Manihiki.

The fact that the Kelvin/frontal waves initiated upstream of the sill propagate along the
eastern boundary of the island instead of entering the upstream basin (i.e. no upstream
influence) raises the question of how the hydraulically controlled flow in the channel can
persist under the condition that those waves may eventually go around the island and enter
the channel from downstream. To answer this question, we employed a numerical model
and found that a steady-state hydraulic control of an inviscid channel flow is only possible
if some frictional drag has been added to the east of the island (friction experiments in
§ 3). From the model output, we found that the lowest frontal wave modes trapped to
the east edge of the channel flow undergo a transition from supercritical to subcritical
downstream of the sill. Flow characteristics within the region of the hydraulic transition
from our simulations are particularly of interest since the channel in our model has rounded
topographic cross-sections and the channel flow has no upstream influence due to our
model set-up, which differs from other historical numerical models with vertical walls
that have a single channel. Following a streamline passing through the channel, both
Bernoulli function and potential vorticity decrease across the hydraulic transition. This
non-conservation shows asymmetry in the cross-channel direction with a larger change
near the east edge of the flow than the west edge of the flow. Moreover, the declines are
gradual and the flow does not reveal features of a rotating shock nor a transverse hydraulic
jump as produced by historical numerical models with vertical walls (e.g. Pratt 1983,
1987; Pratt et al. 2000, 2007). By examining the terms in the equation for the Kelvin
circulation theorem, we found that the decrease in Bernoulli function must be balanced
by the frictional energy dissipation in the flow to the east of the island, or the flow that
encircles the island will accelerate and no steady state can be achieved. The latter is the
case in the no-friction experiments in § 3, where circum-island frontal waves intrude into
the channel from downstream and the flow becomes subcritical everywhere and there is
thus a lack of control.

We also examined cases in which the passage between the island and the western
boundary consists of two separate channels. It is possible to predict the distribution of
transports in the two channels by assuming that both are hydraulically controlled and that
conditions in the eastern channel do not affect those in the western channel. Transports
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estimated based on these assumptions agree with numerical results to within 10 % when
the width of the eastern channel is small or when the height of the eastern channel sill is
tall (rE ≤ 0.5, h0E ≥ 0.4).
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Appendix A. Wave mode calculation

Flow properties (u, v, d) may be separated into a background steady state (U, V, D) and a
perturbation (u′, v′, d′). The shallow-water equations can then be linearized to obtain the
linear equations of perturbations. A one-directional wave-like perturbation may take the
form

φ′(x, y, t) = Re[φ̂(x) eil( y−ct)], (A1)

where φ′ represents a perturbation of any flow property, φ̂ is a complex, x-dependent
eigenfunction, c is a complex phase speed and l is the wavenumber in the y-direction.

The problem can be further simplified by assuming a parallel background flow of U = 0,
V = V(x) and D = D(x), and the linear equations of perturbations then yield (derived from
(3.1)–(3.3))

σ û = −
(

ilV − ν
∂2

∂x2 + νl2
)

û + sign( f )v̂ − ∂

∂x
d̂,

σ v̂ = −(Vx + sign( f ))û −
(

ilV − ν
∂2

∂x2 + νl2
)

v̂ − ild̂,

σ d̂ = −
(

D
∂

∂x
+ Dx

)
û − ilDv̂ − ilVd̂,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

where σ = −ilc is the growth rate. Since we focus on the flow through the channel, λ is
not present in (A2). For a parallel, x-dependent background flow, the form drag introduced
by the varying topography in the y-direction must be balanced by the viscous force. So it
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is reasonable to include a small viscosity ν in (A2), although the numerical model may
not contain any frictional terms. A small viscous term also helps to smooth out the wave
modes with many wiggles (e.g. singular modes that are discontinuous in x, underresolved
modes that have a large wavenumber, etc.). Here, ν = 10−7 is used to compute the wave
modes, for it is large enough to result in some smooth modes and also small enough to give
results similar to those computed from the inviscid equations; l is set to 10−6 since the long
waves are prone to being non-dispersive and the most relevant to the flow hydraulics. The
boundary conditions at the free edges are

Dû = 0, (A3)

Dν
∂ û
∂x

= 0, (A4)

which are automatically satisfied for finite values of velocity and viscous momentum flux
at free edges since D = 0 there.

The matrix eigenvalue equations (A2) are solved numerically using the cross-channel
profiles of V and D at locations between y = 30 and y = 40 from the numerical
simulations. From the many wave mode solutions, the Poincaré waves (or mixed potential
vorticity–gravity waves) can be easily identified by their extremely large phase speeds/very
high frequency and the undulating û with amplitudes larger than those of v̂ and d̂. Most
of these modes are highly unstable. However, it is the frontal waves whose speeds are
comparable to the flow speed that are most relevant to the hydraulic behaviours. We
therefore exclude the Poincaré wave modes that have a large û and sort the rest of the
modes by phase speed. The lowest and the second-lowest mode pairs are featured with
none (0th mode) and one zero crossings (1th mode), respectively. We find that most of
these modes (and almost all for the 0th modes) have phase speeds lying outside of the
range of V(x). The amplitude of the 0th modes peaks near and decays from the edges of
the flow, which confirms that the modes we selected are frontal waves that have similar
decaying features as Kelvin waves.
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